Détermination Structurale à 293 et 133 K du Complexe Racémique Actif [(+)-Co(en)₃(-)-Cr(en)₃](SCN)₆.nH₂O

PAR CATHERINE BROUTY, ANNICK WHULER, PIERRE SPINAT ET PAULETTE HERPIN

Laboratoire de Minéralogie–Cristallographie associé au CNRS, Tour 16, Université Pierre et Marie Curie, 4 place Jussieu, 75230 Paris Cédex 05, France

(Reçu le 28 janvier 1977, accepté le 14 février 1977)

The crystal structure of the active-racemate complex $[(+)-Co(en)_3(-)-Cr(en)_3](SCN)_6.nH_2O$ has been determined at 293 and 133 K by single-crystal X-ray analysis (R = 0.079, 6716 hkl). The space group is $P2_1$ and the lattice constants are: (293 K) $a = 15.67 \pm 0.01$, $b = 17.71 \pm 0.01$, $c = 9.39 \pm 0.01$ Å, $\gamma = 131.0 \pm 0.1^\circ$; (133 K) $a = 15.58 \pm 0.01$, $b = 17.66 \pm 0.01$, $c = 9.39 \pm 0.01$ Å, $\gamma = 131.5 \pm 0.1^\circ$, with two formula units in the unit cell. This crystal is isostructural with (\pm) -Cr(en)_3(SCN)_3.0.75H_2O. At 293 K the two ions (-)-[Cr(en)_3]³⁺ and (+)-[Co(en)_3]³⁺ have the same size but different conformations: the first has a dynamic disorder with the $\Delta[\lambda\lambda(50\% \lambda, 50\% \delta)]$ configuration, the second has the $\Lambda(\delta\delta\delta)$ configuration. At 133 K the disorder disappears and the size of each complex ion is modified. The active-racemate crystal has the same intermolecular cohesion as the chromium racemate, but with stronger N-H···N bonds. There is a connexion (during the decrease from 293 to 133 K) between the thermal contraction of the parameters, the size of the complex ions and their hydrogen bonds. In the correlation with conformational disorder and intermolecular cohesion, the water molecule plays a part as important as in (\pm) -Cr(en)_3(SCN)_3.0.75H_2O.

Introduction

La détermination structurale du complexe racémique- $[(+)-Co(en)_{1}(-)-Cr(en)_{1}]Cl_{6}.6H_{2}O$ actif (Whuler, Brouty, Spinat & Herpin, 1976) a montré que l'ensemble des atomes conserve une répartition identique à celle observée dans l'un ou l'autre des deux composés isotypes (\pm) -Co(en)₃Cl₃.2,8H₂O ou (\pm) -Cr(en)₃-Cl₃. 3H₂O; il suffit de substituer, par exemple, un ion (-)-[Co(en),]³⁺ par un ion (-)-[Cr(en),]³⁺, ce qui entraîne ainsi la disparition du centre de symétrie. Dans la série des complexes thiocyanates, une première étude à partir de clichés de rayons X effectués selon la méthode Seeman-Bohlin (Brouty, Spinat, Whuler & Herpin, 1975), révèle que le composé racémique-actif $[(+)-Co(en)_3(-)-Cr(en)_3](SCN)_6.nH_2O$ est isomorphe du complexe racémique ayant la symétrie la plus basse, soit (\pm) -Cr(en)₁(SCN)₁.0,75H₂O, monoclinique. Ce travail se propose donc de:

- vérifier si le [(+)-Co(en)₃(-)-Cr(en)₃](SCN)₆.*n*-H₂O conserve la répartition structurale du (\pm) -Cr(en)₃-(SCN)₃.0,75H₂O, par simple substitution de (+)-[Cr-(en)₃]³⁺ par (+)-[Co(en)₃]³⁺;

- suivre l'influence d'une telle substitution sur la géométrie (distorsion et conformation) des ions complexes, en recherchant plus particulièrement si le désordre conformationnel rencontré dans (\pm) -Cr(en)₃-(SCN)₃.0,75H₂O (Brouty, Spinat, Whuler & Herpin, 1977*a*) existe également dans le complexe racémique-actif;

- comparer la cohésion intermoléculaire de ces deux complexes.

Dans cette perspective, la détermination structurale du $[(+)-Co(en)_3(-)-Cr(en)_3](SCN)_6.nH_2O$ est effectuée dans les mêmes conditions de température que celle du (\pm) -Cr $(en)_3(SCN)_3.0,75H_2O$, soient 293 et 133 K.

Etude expérimentale

 $[(+)-Co(en)_3(-)-Cr(en)_3](SCN)_6.nH_2O$ cristallise par évaporation du mélange stoechiométrique $(+)-Co(en)_3$ -(SCN)₃ et $(-)-Cr(en)_3(SCN)_3$, après dissolution à 50 °C dans un minimum d'eau, de chacun des composés. L'état d'hydratation des cristaux correspond à une molécule d'eau pour deux ions complexes (Brouty *et al.*, 1975).

La maille cristalline, de symétrie monoclinique, possède à 293 K les paramètres affinés suivants (Brouty *et al.*, 1975): $a = 15,67 \pm 0,01$, $b = 17,71 \pm 0,01$, $c = 9,39 \pm 0,01$ Å, $\gamma = 131,0 \pm 0,1^{\circ}$, V = 1968Å³, Z = 2, $M_r = 837$, $D_c = 1,413$ g cm⁻³. Le groupe spatial est $P2_1$ (C_2^2 n° 4), conformément aux extinctions 00l: l = 2n, et à l'existence, dans la structure, d'ions antipodes optiques de nature différente.

Les intensités de diffraction sont mesurées à partir d'un cristal de taille approximative $0.5 \times 0.6 \times 0.6$ mm, avec la radiation Mo $K\alpha$ (monochromateur). Ces mesures sont collectées par intégration en ω pour 4° < $2\theta < 70^\circ$ à l'aide d'un diffractomètre automatique quatre cercles Philips PW 1100. La détermination des fonds continus est réalisée à partir d'une courbe d'étalonnage $FC = f(\theta)$. 9072 réflexions sont ainsi mesurées à 293 K. Un travail identique est effectué sur le même cristal, à basse température, avec l'appareillage précédent équipé d'un système de refroidissement par jet d'azote gazeux. A 133 K, température effective du cristal, la maille a subi une contraction de 1,7% par rapport au volume déterminé à 293 K, les paramètres sont alors les suivants: $a = 15,58 \pm 0,01$, $b = 17,66 \pm$ 0,01, $c = 9,39 \pm 0,01$ Å, $\gamma = 131,5 \pm 0,1^{\circ}$, V = 1935Å³.

Les intensités de 6100 réflexions (4° $< 2\theta < 60^{\circ}$) sont recueillies à 133 K, dans les mêmes conditions de mesures qu'à la température ambiante. L'ensemble des intensités est corrigé des facteurs de Lorentz et de polarisation, mais non de l'absorption, compte tenu de la valeur du coefficient d'absorption linéaire du composé $\mu(\lambda Mo) = 10.7$ cm⁻¹.

Détermination structurale

Etude à 293 K

La maille cristalline du complexe racémique-actif de symétrie $P2_1$, se déduit de celle du composé racémique de symétrie $P2_1/b$, par une translation -b/4, qui amène en coïncidence les axes 2, des deux réseaux monocliniques (Fig. 1). Les positions atomiques introduites en début d'affinement, peuvent se déduire de l'ensemble des coordonnées (x, y, z) du complexe racémique (Brouty et al., 1977a) par les relations $(x, \frac{1}{4} + y, z)$ et $(1 - x, \frac{5}{4} - y, 1 - z)$. Dans ces conditions, les atomes reliés par le centre de symétrie dans le groupe $P2_1/b$, deviennent indépendants dans le groupe P2,. Une première série de calculs est alors effectuée à l'aide du programme AFFINE, dérivé de ORFLS (Busing, Martin & Levy, 1962), en affinant successivement les coordonnées de tous les atomes (hydrogène exceptés) et leurs coefficients d'agitation thermique anisotrope; seuls les facteurs de Debye des oxygène de l'eau et des atomes soumis au désordre conformationnel, sont laissés isotropes au cours de l'affinement. Deux résultats se dégagent de ces premiers essais:

- les ions (+)- $[Co(en)_3]^{3+}$ et (-)- $[Cr(en)_3]^{3+}$ se distinguent par des comportements très différents: le premier rejette complètement l'hypothèse d'un désordre

Fig. 1. Correspondance entre les mailles des complexes racémique (\pm) -Cr(en)₃(SCN)₃.0,75H₂O et racémique-actif [(+)-Co(en)₃-(-)-Cr(en)₃](SCN)₆.*n*H₂O: — maille P2₁, ---- maille P2₁/b.

lel-ob, tandis que le second conserve, comme dans le composé racémique, un ligand désordonné. Seule la proportion *lel-ob* sur ce ligand est modifiée d'un composé à l'autre;

- les deux sites correspondant aux molécules d'eau sont moins occupés que dans (\pm) -Cr(en)₃-(SCN)₁.0,75H₂O.

Les critères d'affinement utilisés pour l'étude du désordre conformationnel des ions complexes, étant les mêmes que ceux retenus dans Brouty *et al.* (1977*a*), la suite des calculs aboutit aux configurations respectives $\Lambda(\delta\delta\delta)$ pour (+)-[Co(en)_3]^{3+} et $\Delta[\lambda\lambda$ (50% λ , 50% δ)] pour (-)-[Cr(en)_3]^{3+} (IUPAC, 1970).

En ce qui concerne les molécules d'eau, les deux sites OX(11) et OX(12) sont occupés à 50%, ce qui confirme le résultat donné par ATG. A ce stade de la détermination structurale, les positions des hydrogène de l'éthylènediamine sont calculées par *FINDH* (Raymond, Corfield & Ibers, 1968) et introduites dans la suite des calculs. Après avoir relevé sur les séries de Fourier différence les hydrogène des molécules d'eau, un dernier affinement des coordonnées et des coefficients d'agitation thermique anisotrope de tous les atomes autres que les hydrogène, conduit à la solution définitive pour la structure [R = 0,079,* 6716 *hkl*, $F_{obs} > 0,01 F_{obs}$ (max)]. Compte tenu du très grand nombre d'atomes, les positions des hydrogène ne sont pas affinées.

Etude à 133 K

La détermination structurale à 133 K est menée selon le même processus que celui utilisé pour la structure basse température de (\pm) -Cr(en)₃-(SCN)₃.0,75H₂O (Brouty, Spinat, Whuler & Herpin, 1977b). Le Tableau 1 regroupe les coordonnées atomiques du [(+)-Co(en)₃(-)-Cr(en)₃](SCN)₆.nH₂O, aux deux températures étudiées.

Le désordre conformationnel existant sur l'ion (-)- $[Cr(en)_3]^{3+}$ disparaît complètement à 133 K. Les deux ions complexes (-)- $[Cr(en)_3]^{3+}$ et (+)- $[Co(en)_3]^{3+}$ possèdent donc à cette température la même conformation (*lel-lel-lel*). L'ensemble des positions atomiques subit de très faibles écarts par rapport à celles observées à 293 K. L'agitation thermique des atomes à 133 K, est en moyenne moitié de celle observée à 293 K. Lors d'un abaissement de la température, le complexe racémique-actif présente donc un comportement similaire à celui du racémique. Il faut cependant remarquer, qu'il existe une influence réciproque des

^{*} Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope et des amplitudes de vibration (r.m.s.) à 293 et 133 K ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 32523: 58 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars. Chester CH1 1NZ, Angleterre.

Tableau 1. Positions atomiques (×10⁴), coefficients d'agitation thermique isotrope (Å²) et facteur de multiplicité (m) de [(+)-Co(en)₃(-)-Cr(en)₃](SCN)₆.nH₂O à 293 et 133 K

Les atomes de carbone et d'azote des groupements thiocyanates sont notés CS et NS. Les atomes de carbone et d'hydrogène du ligand soumis au désordre conformationnel *lel-ob* sont notés:

$C(\cdots L)$	$ \begin{array}{l} H1(N\cdots L) \\ H2(N\cdots L) \end{array} $	$ \begin{array}{l} H1(C\cdots L) \\ H2(C\cdots L) \end{array} $	lel
C(<i>0</i>)	$\begin{array}{l} H1(N\cdots O)\\ H2(N\cdots O) \end{array}$	$\begin{array}{l} H1(C\cdots O)\\ H2(C\cdots O)\end{array}$) ob

	293 K						133 K			
	т	x	У	Ζ	B (Å ²)	т	x	у	Z	$B(\dot{A}^2)$
Cr(11)	1.00	7418(1)	9969 (1)	7550(0)	1.9	1,00	7418 (1)	9969(1)	7550 (0)	0.8
N(11)	1.00	8611 (6)	11300 (6)	8646 (13)	4.1	1,00	8643 (6)	11312 (6)	8652 (12)	1.6
N(21)	1.00	6195 (6)	8798 (5)	6431 (10)	2,7	1,00	6118 (8)	8761 (7)	6402 (13)	2,2
N(31)	1,00	6362 (5)	9984 (4)	8669 (10)	2,5	1,00	6303 (8)	9982 (7)	8691 (13)	2,1
N(41)	1,00	8509 (8)	9901 (8)	6613 (13)	5,0	1,00	8602 (8)	9999 (7)	6607 (12)	2,2
N(51)	1,00	7399 (9)	9144 (7)	9054 (13)	4,5	1,00	7361 (7)	9112 (6)	9057 (11)	1,6
N(61)	1,00	7520 (6)	10783 (5)	5921 (11)	3,4	1,00	7468 (6)	10788 (5)	5894 (10)	1,3
C(11)	1,00	8041 (7)	11631 (7)	9238 (13)	3,3	1,00	8077 (10)	11686 (9)	9244 (15)	2,5
C(21)	1,00	5727 (5)	9070 (5)	5351 (9)	2,3	1,00	5748 (8)	9079 (7)	5345 (11)	1,4
C(31)	1,00	6914 (8)	10762 (7)	9779 (14)	3,0	1,00	6923 (10)	10773 (8)	9822 (15)	2,3
C(41L)	0,50	8877 (15)	9521 (13)	7504 (22)	4,0	1,00	8959 (8)	9601 (8)	7602 (14)	2,7
C(410)	0,50	8326 (20)	8989 (18)	7293 (28)	4,9					
C(51L)	0,50	7907 (14)	8719 (12)	8397 (21)	3,3	1,00	7902 (8)	8741 (8)	8385 (14)	2,6
C(510)	0,50	8211 (18)	9011 (16)	8826 (28)	4,3					
C(61)	1,00	6737 (7)	10081 (6)	4733 (12)	3,1	1,00	6768 (9)	10095 (8)	4667 (14)	2,1
H1(N11)	1,00	8902	11201	9336	4,0	1,00	8921	11204	9347	2,0
H2(N11)	1,00	9145	11752	8071	4,0	1,00	9194	11762	8076	2,0
H1(N21)	1,00	6457	8555	5990	4,0	1,00	6352	8485	5985	2,0
H2(N21)	1.00	5654	8347	7004	4,0	1,00	5549	8322	6966	2,0
H1(N31)	1,00	6012	10084	8088	4,0	1,00	5972	10107	8117	2,0
H2(N31)	1.00	5873	9403	9077	4,0	1,00	5787	9393	9085	2,0
HI(N4IL)	0.50	8183	9516	5869	4,0	1,00	8312	9627	5843	2,0
$H_2(N_4 I_L)$	0.50	9097	10501	6346	4,0	1,00	9195	10618	6378	2,0
HI(N410)	0.50	8380	9809	5701	4,0					
$H_2(N410)$	0.50	9199	10453	6762	4,0	1.00	7746		0000	2.0
HI(NSIL)	0.50	/801	9518	9783	4,0	1,00	1140	9474	9808	2,0
$H_2(NSIL)$	0.50	0708	8037	9325	4,0	1,00	0033	8005	9296	2,0
HI(NSIO)	0.50	1343	9430	9672	4,0					
$H_1(N61)$	1.00	7320	11112	6222	4,0	1.00	7180	11054	6100	20
$H_2(N61)$	1.00	8212	112	5606	4,0	1,00	8173	11265	5621	2,0
$H_1(C(1))$	1.00	8479	1202	9997	4.0	1,00	8532	12161	9984	2,0
$H_2(C_{11})$	1.00	7958	11954	8515	4,0	1.00	7980	11994	8511	2,0
$H_1(C_{21})$	1.00	5342	8580	4620	4.0	1.00	5343	8579	4620	2,0
$H_2(C_{21})$	1.00	5221	9119	5795	4.0	1.00	5254	9150	5780	2.0
$H_1(C_{31})$	1.00	6478	10949	9967	4.0	1.00	6493	10957	10082	2.0
H2(C31)	1.00	6989	10519	10629	4.0	1,00	7027	10519	10634	2.0
H1(C41L)	0.50	9130	9256	6942	4.0	1,00	9272	9370	7088	2.0
H2(C41L)	0.50	9477	10040	8094	4,0	1,00	9514	10113	8253	2,0
H1(C410)	0.50	7660	8379	6915	4,0					
H2(C410)	0.50	8958	9042	7088	4,0					
H1(C51L)	0.50	8158	8534	9128	4,0	1,00	8100	8501	9103	2,0
H2(C51L)	0,50	7358	8151	7828	4,0	1,00	7377	8208	7738	2,0
H1(C510)	0.50	8920	9552	9235	4,0					
H2(C510)	0.50	7944	8400	9240	4,0					
H1(C61)	1.00	6477	10361	4230	4,0	1,00	6506	10353	4101	2,0
H2(C61)	1.00	7137	9990	4100	4,0	1,00	7207	10016	4094	2,0
Co(12)	1.00	2586 (1)	5041 (1)	2469 (1)	3,0	1,00	2593 (1)	5024 (1)	2439 (1)	1,7
N(12)	1.00	1389 (6)	3791 (5)	1445 (10)	2,5	1,00	1431 (7)	3773 (7)	1413 (12)	1,9
N(22)	1.00	3934 (6)	6259 (5)	3578 (12)	3,2	1,00	3870 (6)	6234 (5)	3575 (10)	1,2
N(32)	1.00	3663 (6)	4995 (7)	1294 (11)	3,9	1,00	3683 (6)	5026 (6)	1326 (11)	1,2
N(42)	1.00	1382 (7)	4996 (5)	3381 (11)	4,2	1,00	1385 (7)	4987 (6)	3323 (12)	1,9
N(52)	1.00	2642 (5)	5906 (5)	997 (9)	2,6	1,00	2674 (7)	5916 (6)	1016 (11)	1,6
N(62)	1.00	2575 (5)	4304 (5)	4088 (10)	2,6	1,00	2523 (7)	4270 (6)	4043 (12)	1,8
C(12)	1.00	1823 (11)	3316 (10)	826 (18)	4,5	1,00	1919 (8)	3363 (7)	795 (13)	1,6

.

Tableau 1 (suite)

			293 K					133 K		
	m	x	v	z	$B(\dot{A}^2)$	т	х	r	z	$B(Å^2)$
C(22)	1.00	4272 (11)	5868 (10)	4620 (19)	5,2	1,00	4304 (8)	5904 (8)	4668 (14)	2,1
C(32)	1.00	2978 (9)	4228 (8)	132 (16)	5.0	1,00	3059 (8)	4248 (7)	176 (14)	1,7
C(42L)	1.00	893 (10)	5243 (9)	2260 (15)	5.4	1.00	935 (9)	5257 (7)	2242 (12)	2.3
C(52I)	1.00	1914 (12)	6121 (11)	1465 (20)	7.4	1.00	1952 (7)	6156 (7)	1445 (11)	2,0
C(62)	1,00	3207 (9)	4995 (8)	5315 (16)	4.5	1.00	3203 (8)	4946 (7)	5258 (13)	1.5
$H_1(N_{12})$	1.00	1133	3924	759	4.0	1.00	1155	3892	732	2.0
$H_2(N12)$	1.00	843	3373	2037	4.0	1.00	884	3332	1999	2.0
H1(N22)	1.00	3736	6556	4019	4.0	1.00	3618	6487	4018	2.0
$H_2(N_{22})$	1.00	4491	6680	3001	4.0	1.00	4427	6687	3008	2.0
$H_1(N_{32})$	1,00	3963	4826	1839	4.0	1.00	4008	4891	1891	2.0
$H_2(N_{32})$	1.00	4196	5579	921	4.0	1.00	4203	5619	946	2.0
$H_1(N_1/2I)$	1,00	1680	5432	4067	40	1,00	1684	5421	4018	2.0
$H_2(N A_2I)$	1,00	847	4401	3720	40	1,00	828	4383	3647	2.0
$H_2(N_{42L})$	1,00	2200	5503	185	4,0	1,00	2436	5609	197	2,0
HI(NJ2L) HI(NJ2L)	1,00	2335	6465	902	40	1,00	2383	6477	940	2,0
$\Pi Z(NSZL)$	1.00	2005	4070	3877	4,0	1,00	2702	3001	3772	2,0
$H_1(N_{02})$ $H_2(N_{02})$	1.00	1880	3811	1341	4,0	1,00	1813	3803	4308	2,0
$H_2(N02)$	1,00	1217	2820	120	4,0	1,00	1430	2886	71	2,0
$H_1(C_{12})$	1,00	1027	2029	150	4,0	1,00	2019	2000	1513	2,0
$H_2(C12)$	1.00	1937	5014	5209	4,0	1,00	2018	6209	5201	2,0
$H_1(C_{22})$	1.00	4//5	0303	3308	4,0	1,00	4141	5778	4221	2.0
$H_2(C_{22})$	1.00	4020	3004	4140	4,0	1,00	3476	4053	102	2,0
HI(C32)	1.00	3304	4022	-221	4,0	1,00	3470	4033	- 102	2,0
$H_2(C_{32})$	1.00	2851	4499	-030	4,0	1,00	2937	4300	2634	2,0
$H_2(C42L)$	1.00	498	5419	2090	4,0	1,00	452	4711	2034	2.0
HI(C42L)	1.00	398	4092	1038	4,0	1,00	433	4711	636	2,0
HI(C52L)	1.00	10/1	0255	052	4,0	1,00	2273	6727	2059	2,0
$H_2(C_{52L})$	1.00	2338	4709	2072	4,0	1,00	2373	4625	5805	2,0
HI(C02)	1.00	3331	4/06	6729	4,0	1,00	3303	403J 5004	5746	2,0
$H_2(C_{02})$	1,00	2010	5177	J/20 0466 (4)	4,0	1,00	4651 (7)	5094	9/40 9/4 3 (/)	2,0
S(11)	1.00	40/0(2)	0008 (2)	8400 (4)	3,1	1,00	4031 (2) 5269 (0)	6003 (2)	0442 (4)	2,5
US(11)	1,00	5441 (7)	6327(0)	0331 (13)	5,1	1,00	5000 (9)	0279 (7) 5000 (7)	8202 (15)	27
NS(11) S(21)	1,00	5900 (8)	0045(7)	8207 (17)	5,1	1,00	2029 (0)	5989(/) 9303(7)	8202 (13)	2,7
S(21)	1,00	139(2)	8285 (2)	0007 (4) 7222 (10)	4,0	1,00	107(2)	8292(2)	7202(4)	2,0
VS(21)	1,00	013(9)	0390(10)	6204 (19)	2,1	1,00	000(0)	0318(0)	6766 (15)	3.5
NS(21)	1.00	996 (11)	7909(1)	0294 (10)	7,0 5.0	1,00	2262 (2)	7510(7)	8053 (5)	2,5
S(31)	1,00	3380 (3)	7808(3)	6500 (15)	5,0	1,00	3302 (2) 2056 (9)	7112 (2)	6513 (12)	2,4
US(31)	1.00	2992 (10)	(720 (9)	6309(13)	3,2	1,00	2930 (8)	6756 (7)	5202 (12)	2,2
NS(31) S(12)	1,00	2039 (11)	0720(8)	3437 (17)	1,4	1,00	2130 (0)	0730(7) 9333(3)	1521 (12)	2,4
S(12)	1,00	5247(2)	8298(2)	1498 (4)	4,2	1,00	3342 (2) 4635 (0)	0333 (2)	1729 (14)	7 1
CS(12)	1,00	4035 (9)	0/23(0)	1737 (13)	4,3	1,00	4033 (9)	0/13(0)	1730 (14)	2,1
NS(12)	1,00	4121 (11)	8980 (9)	1907 (18)	0,0	1,00	4130 (10)	6992 (8)	1837 (10)	3,0
S(22)	1,00	9929 (3)	0040(2)	1140(4)	4,5	1,00	9931 (2)	(031(2))	1141(4)	1,1
CS(22)	1.00	9327 (8)	6045 (7)	2054 (15)	3,1	1,00	9340 (9)	0U30 (8)	2041 (18)	2,4
NS(22)	1,00	9012 (11)	5678(10)	3724 (18)	1,5	1,00	8951 (8)	3390(8)	3700(14)	2,9
S(32)	1,00	6645 (3)	/218(3)	1930 (6)	5,8	1,00	0003 (2)	7203 (2)	1931 (4)	2,3
CS(32)	1,00	6936 (10)	///0(/)	3352 (10)	4,0	1,00	0940 (8)	1195 (1)	3422 (14)	2,3
NS(32)	1,00	/093 (9)	8242 (8)	4424 (14)	0,2	1,00	/225 (11)	8285 (10)	4482 (15)	4,2
OX(11)	0.50	863 (14)	6994 (12)	1131(23)	4,0	1,00	8/5(9)	/15/(8)	1/38 (18)	2,1
HI(OXII)	0.50	1500	6994	1/3/	4,0	1,00	1500	6994	1/3/	2,0
$H_2(OXII)$	0.50	220	0290	1131	4,0	1,00	220	0290	1/3/	2,0
OX(12)	0.50	9130 (11)	/841 (9)	2295 (17)	2,0	1,00	9130 (0)	18/9(3)	2280 (10)	3,0
HI(OXIZ)	0.50	8510 (0)	/841 (U)	2295 (0)	4,0	1,00	8210(0)	7841 (U)	2293 (0)	2,0
$H_2(OX12)$	0,50	9 790 (0)	8220 (0)	2295 (0)	4,0	1,00	(U) UE/ E	8000 (0)	2993 (U)	2,0

deux ions (+)- $[Co(en)_3]^{3+}$ et (-)- $[Cr(en)_3]^{3+}$ sur leur stabilité respective. A 133 K, contrairement au phénomène observé dans (\pm) - $Cr(en)_3(SCN)_3.0,75H_2O$ (Brouty *et al.*, 1977*b*), l'ion (-)- $[Cr(en)_3]^{3+}$ ne présente plus aucune instabilité résiduelle en conformation (*lel-lel-lel*): les facteurs de Debye des atomes antérieurement désordonnés ont une valeur comparable à celle des autres carbone. Il semble donc que la présence de l'ion (+)- $[Co(en)_3]^{3+}$ toujours (*lel-lel-lel*), facilite la stabilisation de (-)- $[Cr(en)_3]^{3+}$ à 133 K. Inversement à 293 K, (-)- $[Cr(en)_3]^{3+}$ désordonné [*lel-lel* (50% *lel*, 50% *ob*)] tend à déstabiliser légèrement le (+)- $[Co(en)_3]^{3+}$ (*lel-lel-lel*), entraînant une valeur élevée du facteur *B* pour le carbone C(52*L*). Ce dernier phénomène disparaît à 133 K puisque (-)- $[Cr(en)_3]^{3+}$ ne présente plus aucun désordre. Le Tableau 2 explicite les caractéristiques conformationnelles des deux ions à 293 et 133 K. Tableau 2. Caractéristiques conformationnelles des ions (-)-[Cr(en)₃]³⁺ et (+)-[Co(en)₃]³⁺ à 293 et 133 K

	Distan au N(11), N(ces (Å) plan (41), N(61)	Longue de lia C-	eur (Å) aison –C	Distances (Á) des carbone au plan moyen du ligand	
$(-) Cr(en)_3 ^3$	293 K	133 K	293 K	133 K	293 K	133 K
C(11)	0.47	0,38			+0,40	+0,43
C(31)	1,95	1,88			-0,22	-0,26
Δ [C(11) C(31)]	1,48	1,50	1,48 (3)	1,51 (2)		
C(21)	1,95	1,90			-0,47	-0,33
C(61)	0,47	0,38			+0,15	+0,32
Δ (C(21) C(61)	1,48	1,52	1,53 (2)	1,54 (2)		
C(41L)	0,27	0.38			+0,25	+0,28
C(51L)	1,73	1,88			-0,41	-0,43
$\Delta [C(41L) - C(51L)]$	1,46	1,50	1,48 (5)	1,50 (2)		
C(41 <i>O</i>)	0,86				-0,50	
C(510)	1,53				+0,14	
⊿ C(410) C(510)	0,67		1,45 (7)			
		(1)		(1)	Distar	nces (Å)
	Distan	ices (A)	Longu	eur (A)		aroone
	N(12), N((42), N(62)	C-	-C	du li	igand
(+) Co(en) ₃ ³	293 K	133 K	293 K	133 K	293 K	133 K
C(12)	0.21	0.29			+0.46	+0,42
C(32)	1.77	1,78			-0,33	-0,28
Δ [C(12) C(32)]	1,56	1,49	1,57 (2)	1,50(2)		
C(22)	1,83	1,89			-0,38	-0,54
C(62)	0,34	0,39			+0,46	+0,18
A[C(22)-C(62)]	1,49	1,50	1,49 (2)	1,50 (2)		
C(42L)	0.31	0,29			+0,53	+0,50
C(52L)	1,81	1,78			-0,16	-0,16
$\Delta [C(42L) - C(52L)]$	1,50	1,49	1,51 (2)	1,50 (2)		

Enfin il faut noter que les cristaux racémiques-actifs, sont plus hydratés à 133 qu'à 293 K. Ceci s'explique par une humidité ambiante très accrue au voisinage du cristal, lors des manipulations à basse température, et par le caractère labile des molécules d'eau qui se traduit à 293 K, par une occupation partielle des sites. Entre 293 et 133 K, les cristaux de [(+)-Co(en)₃(-)-Cr(en)₃]-(SCN)₆ passent d'un état d'hydratation 0,5H₂O à 1H₂O par ion complexe, tandis que dans les mêmes conditions expérimentales, (\pm)-Cr(en)₃(SCN)₃ conserve une hydratation constante 0,75H₂O.

Description de la structure

La projection de la structure perpendiculairement à l'axe binaire [001] est représentée par la Fig. 2. L'arrangement structural du complexe racémique-actif reste similaire à celui du (\pm) -Cr(en)₃(SCN)₃.0,75H₂O (Brouty *et al.*, 1977*a*), les feuillets d'octaèdres parallèles à la famille de plans (110) étant translatés de **b**/4 par rapport à l'origine. Les distances et angles de liaisons des ions thiocyanates et des molécules d'eau sont répertoriés dans le Tableau 3.

Tableau 3. Distances (Å) et angles (°) S-C-N et H₂O (à 293 et 133 K)

293 K		133 K	
1,67(1))		1,65 (1)	
1,12(1)	176 (3)	1,17 (2)	179 (3)
2,78 (1)		2,83 (1)	
1,62(1)		1,65(1)	
1,15(1)	177 (4)	1,11 (2)	179 (3)
2,78 (1)		2,77 (1)	
1,72(1)		1,69 (1)	
1,14(1)	168 (4)	1,16(1)	173 (3)
2,85(1)		2,85(1)	
1,58 (1)		1,64 (1)	
1,17(1)	176 (4)	1,15(1)	178 (3)
2,75 (1)		2,78 (1)	
1,64 (1)		1,63 (1)	
1,12(1)	174 (4)	1,21 (1)	176 (3)
2,79(1)		2,70 (1)	
1,54 (1)		1,58(1)	
1.23 (1)	172 (4)	1,19(1)	174 (3)
2,76 (1)		2,77 (1)	
1,00		1,18	
0,96	101	1,15	80
1.52		1,50	
0.97		0,93	
0,97	102	0,92	108
1.52		1,50	
	$\begin{array}{c} 293 \text{ K} \\ 1,67 (1) \\ 1,12 (1) \\ 2,78 (1) \\ 1,62 (1) \\ 1,15 (1) \\ 2,78 (1) \\ 1,72 (1) \\ 1,72 (1) \\ 1,72 (1) \\ 1,74 (1) \\ 2,85 (1) \\ 1,14 (1) \\ 2,85 (1) \\ 1,58 (1) \\ 1,75 (1) \\ 1,58 (1) \\ 1,12 (1) \\ 2,79 (1) \\ 1,12 (1) \\ 2,79 (1) \\ 1,12 (1) \\ 2,79 (1) \\ 1,12 (1) \\ 2,79 (1) \\ 1,12 (1) \\ 2,79 (1) \\ 1,12 (1) \\ 2,79 (1) \\ 1,12 (1) \\ 2,79 (1) \\ 1,12 (1) \\ 2,79 (1) \\ 1,12 (1) \\ 2,79 (1) \\ 1,12 (1) \\ 2,79 (1) \\ 1,12 (1) \\ 2,79 (1) \\ 1,12 (1) \\ 2,79 (1) \\ 1,12 (1) \\ 2,79 (1) \\ 1,12 (1) \\ 2,79 (1) \\ 1,12 (1) \\ 1,12 (1) \\ 2,79 (1) \\ 1,12 (1) \\ 1,1$	$\begin{array}{c} 293 \text{ K} \\ 1,67 (1) \\ 1,12 (1) \\ 2,78 (1) \\ 1,62 (1) \\ 1,15 (1) \\ 2,78 (1) \\ 1,5 (1) \\ 1,72 (1) \\ 1,72 (1) \\ 1,74 (1) \\ 2,85 (1) \\ 1,75 (1) \\ 1,58 (1) \\ 1,17 (1) \\ 2,75 (1) \\ 1,58 (1) \\ 1,12 (1) \\ 2,75 (1) \\ 1,12$	$\begin{array}{c c} 293 \text{ K} & 133 \text{ K} \\ 1,67 (1) \\ 1,12 (1) \\ 2,78 (1) \\ 1.62 (1) \\ 1.55 (1) \\ 1.75 (1) \\ 1.75 (1) \\ 1.75 (1) \\ 1.77 (4) \\ 1.77 (4) \\ 1.71 (1) \\ 1.72 (1) \\ 1.72 (1) \\ 1.72 (1) \\ 1.72 (1) \\ 1.72 (1) \\ 1.72 (1) \\ 1.72 (1) \\ 1.75 (1) \\ 1.75 (1) \\ 1.75 (1) \\ 1.75 (1) \\ 1.75 (1) \\ 1.76 (4) \\ 1.16 (1) \\ 1.75 (1) \\ 1.76 (4) \\ 1.15 (1) \\ 2.78 (1) \\ 1.76 (4) \\ 1.15 (1) \\ 2.78 (1) \\ 1.72 (1) \\ 1.76 (4) \\ 1.15 (1) \\ 2.77 (1) \\ 1.76 (4) \\ 1.15 (1) \\ 2.77 (1) \\ 1.76 (1) \\ 1.72 (1) \\ 1.72 (1) \\ 1.72 (1) \\ 1.75 (1) \\ 1.76 (1) \\ 1.75 (1) \\ 1.72 (1) \\ 1.75 (1) \\ $

Fig. 2. Projection de la structure ⊥[001]. - - Co et Cr, • C et N, ⊙ S, • CS, ● NS, ● OX, A et A configurations des ions complexes; — liaison covalente, —— liaison hydrogène, — — liaison hydrogène faible, …… ligand désordonné ob.

Ions complexes

La Fig. 3 schématise les deux ions complexes antipodes optiques (+)- $[Co(en)_3]^{3+}$ et (-)- $[Cr(en)_3]^{3+}$ dont les distances et angles de liaisons covalentes sont reportés dans les Tableaux 4 et 5.

La comparaison à 293 K des longueurs de liaison Cr-N et Co-N montre que les deux ions complexes ont une taille sensiblement identique, les distances métal-azote subissant un effet de moyenne par rapport

Fig. 3. Représentation schématique des deux ions antipodes optiques (a) (+)- $|Co(en)_3|^{3+}$, $\Lambda(\delta\delta\delta)$, et (b) (-)- $|Cr(en)_3|^{3+}$, $\Delta|\lambda\lambda$ (50% λ , 50% δ)].

aux valeurs observées dans les composés racémiques (Tableau 6). Ce phénomène est rigoureusement semblable à celui décrit dans [(+)-Co(en)₃(-)-Cr(en)₃]-Cl₆.6H₂O (Whuler *et al.*, 1976). Il justifie, par ailleurs, la diminution de volume existant à 293 K entre les mailles du (\pm) -Cr(en)₃(SCN)₃.0,75H₂O et du [(+)-Co(en)₃(-)-Cr(en)₃](SCN)₆.1H₂O (1995 et 1968 Å³), l'encombrement des ions complexes étant plus faible dans le racémique.

Par contre, à 133 K, les octaèdres tendent à retrouver leur individualité: (+)- $[Co(en)_3]^{3+}$ redevient plus petit que (-)- $[Cr(en)_3]^{3+}$ (Tableau 6). Une telle différenciation montre que les conditions utilisées pour l'affinement de ces structures sont capables de conduire à des valeurs autres que des moyennes statistiques sur les deux ions complexes; on peut donc conclure, puisque la précision des affinements est la même à 133 qu'à 293 K, que l'effet de moyenne observé à 293 K sur la taille des ions, correspond bien à une réalité physique.

L'étude de la distorsion des octaèdres montre (Tableau 6) l'évolution des angles ε et Φ en fonction de la nature des ions et de la température: ε exprime l'écart au parallélisme des triangles de base, Φ est l'angle moyen explicitant la rotation de ces deux triangles, par rapport à leur position d'antiprisme (Fig. 4). Il apparaît que les deux ions subissent à 293 K des déformations ε_1

Tableau 4. Longueurs de liaisons (Å) dans (-)-[Cr(en)₃]³⁺ et (+)-[Co(en)₃]³⁺ à 293 et 133 K

C-H = 0.95 Å, N-H = 0.87 Å (H positionnes par FINDH).

	293 K	133 K
$(-) - Cr(en)_3 ^{3+}$		-
Cr(11)–N(11)	2,081 (8)	2,083 (9)
Cr(11) - N(21)	1,966 (7)	2,023 (9)
Cr(11) - N(31)	1,976 (7)	2,053 (9)
Cr(11) - N(41)	1,997 (9)	2,014 (9)
Cr(11) - N(51)	2,018 (9)	2,029 (9)
Cr(11) - N(61)	2,035 (8)	2,090 (8)
N(11) - C(11)	1,46 (2)	1,51 (2)
N(21) - C(21)	1,50 (1)	1,44 (2)
N(31) - C(31)	1,47 (2)	1,49 (2)
N(41) - C(41L)	1,41 (4)	1,48 (2)
N(41) - C(410)	1,58 (6)	
N(51) - C(51L)	1,54 (4)	1,51 (2)
N(51) - C(510)	1,45 (5)	
N(61) - C(61)	1,51 (1)	1,50 (2)
C(11) - C(31)	1,48 (3)	1,51 (2)
C(21) - C(61)	1,53 (2)	1,54 (2)
C(41L) - C(51L)	1,48 (5)	1,50 (2)
C(410) - C(510)	1,45 (7)	
$(+)-[Co(en)_3]^{3+}$		
Co(12) - N(12)	1,974 (8)	1,946 (9)
Co(12) - N(22)	2,055 (8)	2,007 (9)
Co(12) - N(32)	2,063 (9)	1,991 (8)
Co(12) - N(42)	2,026 (8)	2,017 (9)
Co(12)-N(52)	2,022 (7)	2,003 (9)
Co(12)-N(62)	1,997 (7)	1,965 (9)
N(12)–C(12)	1,50 (2)	1,47 (2)
N(22)–C(22)	1,48 (2)	1,54 (2)
N(32)–C(32)	1,51 (2)	1,49 (2)
N(42) - C(42L)	1,52 (2)	1,48 (2)
N(52)-C(52L)	1,49 (2)	1,50 (2)
N(62)-C(62)	1,49 (2)	1,47 (2)
C(12)–C(32)	1,57 (2)	1,50 (2)
C(22)-C(62)	1,49 (2)	1,50 (2)
C(42L) - C(52L)	1,51 (2)	1,50 (2)

et ε_2 nettement supérieures à celles observées dans leur composé racémique respectif, (-)-[Cr(en)₃]³⁺ étant l'ion le plus perturbé. A 133 K, cette distorsion régresse: les ions retrouvent une valeur ε comparable à celles obtenues dans les cristaux racémiques. La température influe peu, par contre, sur la rotation Φ .

Tableau 5. Angles de liaisons (°) dans (-)-[Cr(en)₃]³⁺ et(+)-[Co(en)₃]³⁺ à 293 et 133 K

 $\angle H - C - H = \angle H - N - H = 109,5^{\circ}.$

	293 K	133 K
$(-) - [Cr(en)_3]^{3+}$		
N(11) = Cr(11) - N(31)	82 5 (5)	82.7 (5)
N(11) = Cr(11) = N(51) N(21) = Cr(11) = N(61)	85,1,(5)	83.4 (5)
N(21) - Cr(11) - N(51)	82.6 (6)	85.0 (6)
N(41) = Cr(11) = N(31) N(41) = Cr(11) = N(41)	96.7(7)	93,2 (6)
N(11) = CI(11) = N(41) $N(11) = C_{\pi}(11) = N(51)$	07.8 (6)	93,2 (0)
N(11) - Cr(11) - N(51)	92,0 (0)	93,2 (0) 80 8 (6)
N(11) - Cr(11) - N(01)	00,3(3)	01.5 (6)
N(21) - Cr(11) - N(31)	93,0 (3)	91,5(0)
N(21) - Cr(11) - N(41)	09,0(0)	93,0 (0)
N(21) - Cr(11) - N(51)	94,0 (0)	93,8 (0)
N(31) - Cr(11) - N(51)	91,3(0)	91,4 (0)
N(31) - Cr(11) - N(61)	93,9 (3)	91,4(0)
N(41) - Cr(11) - N(61)	92,3 (0)	92,5 (0)
Cr(11) = N(11) = C(11)	106 (1)	109 (1)
N(11) - C(11) - C(31)	110(1)	107(2)
C(11) - C(31) - N(31)	107(1)	109(2)
C(31) - N(31) - Cr(11)	114(1)	111(1)
Cr(11) = N(21) = C(21)	111(1) 107(1)	110(1)
N(21) = C(21) = C(61)	107 (1)	112(2)
C(21) - C(61) - N(61)	110(3)	100(2)
C(61) - N(61) - Cr(11)	109(1)	109(1)
Cr(11) = N(41) = C(41L)	114(2) 108(2)	107(1)
N(41) - C(41L) - C(51L)	106(3)	107(2)
C(41L) - C(51L) - N(51)	107(3)	109(2)
C(51L) = N(51) = Cf(11)	100(1) 107(2)	100 (2)
Cr(11) = N(41) = C(410) N(41) = C(410) = C(510)	107(2) 108(3)	
N(41) = C(410) = C(510)	100(3)	
C(510) = C(510) = N(51)	107(3)	
C(310) = N(31) = CI(11)	114 (3)	
$(+) - [Co(en)_3]^{3+}$		
N(12) - Co(12) - N(32)	84,0 (5)	83,9 (5)
N(22) - Co(12) - N(62)	82,1 (5)	83,4 (5)
N(42) - Co(12) - N(52)	83,9 (5)	82,7 (5)
N(12) - Co(12) - N(42)	89,2 (6)	91,2 (6)
N(12) - Co(12) - N(52)	93,1 (5)	95,1 (6)
N(12) - Co(12) - N(62)	92,4 (5)	91,0 (6)
N(22) - Co(12) - N(32)	90,5 (6)	92,0 (6)
N(22)-Co(12)-N(42)	96,7 (6)	93,5 (6)
N(22) - Co(12) - N(52)	92,7 (5)	90,9 (5)
N(32)-Co(12)-N(52)	92,0 (6)	92,2 (6)
N(32)-Co(12)-N(62)	92,1 (6)	93,9 (6)
N(42) - Co(12) - N(62)	92,6 (6)	91,7 (6)
Co(12) - N(12) - C(12)	112 (2)	111 (2)
N(12)-C(12)-C(32)	103 (2)	106 (2)
C(12)-C(32)-N(32)	107 (2)	106 (2)
C(32) - N(32) - Co(12)	108 (2)	110(1)
Co(12) - N(22) - C(22)	106 (2)	109 (1)
N(22)-C(22)-C(62)	106 (2)	102 (2)
C(22)-C(62)-N(62)	102 (2)	107 (2)
C(62)–N(62)–Co(12)	110(1)	111 (1)
Co(12)-N(42)-C(42L)	109 (2)	110 (2)
N(42)-C(42L)-C(52L)	104 (2)	107 (2)
C(42L)-C(52L)-N(52)	111(2)	107 (2)
C(52L) - N(52) - Co(12)	110 (2)	112 (1)

N(5

N(3

5

N(11)

N(21)

N(51)

(41)

Fig. 4. Distorsion des ions complexes (a) à 293 et (b) à 133 K.

(±)-Co(en)3(SCN)3 Orthorhombique	[(+)-Co(en) ₃ ()-Cr Monoc	(en) ₃](SCN) ₆ . <i>n</i> H ₂ O linique	(±)-Cr(en) ₃ (SCN) ₃ .0,75H ₂ O Monoclinique
$(+), (-) - [Co(en)_3]^3$	$(+) - [Co(en)_3]^{3+}$	$(-) - [Cr(en)_3]^{3+}$	$(+), (-) \cdot [Cr(en)_3]^3$
Co—N (Å)	Co–N (Å)	Cr–N (Å)	Cr–N (Å)
1,963 (293 K)	1,988 (133 K) 2,023 (293 K)	2,012 (293 K) 2,048 (133 K)	2,075 (293 et 133 K)
ε (°)	<i>ε</i> ₂ (°)	ε_1 (°)	£ (°)
1,0 (293 K)	0,65 (133 K) 1,7 (293 K)	1,1 (133 K) 3,8 (293 K)	1,0 (293 et 133 K)
Φ (°)	${\pmb \Phi}_2\left(^\circ ight)$	$\pmb{\Phi}_1$ (°)	Φ (°)
5.0 (293 K)	7,3 (293 K) 8,0 (133 K)	5,9 (293 K) 6,1 (133 K)	8,2 (293 et 133 K)

Tableau 6.	Evolution	de la	géométrie	(taille et	distorsion)	des ions	()-[($[r(en)_{3}]^{3+}$	et (+	$-[Co(en)_{3}]^{3}$	+ dans	les
			complexe	s thiocyar	nates racémi	ques et re	acémiq	ue-actif		c.		

Tableau	7. Angles	(°) entre	plans	moyens	des ligands
équit	valents du (—)-[Cr(en	$]_{3}]^{3+}e$	t (+)-[C	$o(en)_{3}^{-1}$

		293 K	133 K
[Cr(11)N(11)N(31)]	[Co(12)N(12)N(32)]	1,6	0,6
[Cr(11)N(21)N(61)]	[Co(12)N(22)N(62)]	3,7	7,2
[Cr(11)N(41)N(51)]	[Co(12)N(42)N(52)]	4,8	2,7
[N(11)N(41)N(61)]	[N(12)N(42)N(62)]	4,8	1,3
[N(21)N(31)N(51)]	[N(22)N(32)N(52)]	2,0	0,5

On peut noter enfin que dans $[(+)-Co(en)_3(-)-Cr(en)_3](SCN)_6.1H_2O$, les ions antipodes optiques s'écartent sensiblement des positions centrosymétriques que possèdent leurs 'homologues' dans (\pm) -Cr(en)_3(SCN)_3.0,75H_2O; en effet, le Tableau 7 explicitant les angles entre les plans moyens équivalents de $(+)-[Co(en)_3]^{3+}$ et $(-)-[Cr(en)_3]^{3+}$ montre que les deux ions inverses subissent l'un par rapport à l'autre une petite rotation.

Cohésion intermoléculaire à 293 K

Le réseau de liaisons hydrogène (Tableau 8) reste identique à celui décrit dans (\pm) -Cr(en)₃(SCN)₃.0,75-H₂O (Brouty *et al.*, 1977*a*), avec cependant l'apparition de liaisons supplémentaires très faibles (H···S ~ 2,9 Å) sur les atomes de soufre reliés aux ions complexes |S(11), S(12), S(21), S(22)]. Ces soufre portent ainsi quatre liaisons hydrogène au lieu de trois dans le racémique, certaines liaisons N-H···S se renforçant tandis que d'autres s'affaiblissent. Par contre les liaisons N···NS sont dans l'ensemble plus fortes dans le complexe racémique-actif [N···NS (moy.) = 2,997 Å et H···NS (moy.) = 2,19 Å| que dans le composé racémique [N···NS (moy.) = 3,022 Å et H···NS (moy.) = 2,29 Å].

Cohésion intermoléculaire à 133 K

La cohésion intermoléculaire de $[(+)-Co(en)_3(-) Cr(en)_{1}$ (SCN)₆. *n*H₂O est globalement moins renforcée par l'abaissement de température (293 \rightarrow 133 K) que celle du (±)-Cr(en)₃(SCN)₃.0,75H₂O (Tableau 8). Ceci est en accord avec l'écart existant, entre les contractions volumiques que subissent les mailles cristallines de ces deux composés, sous l'influence de la température (racémique-actif: 1,7%; racémique: 2,7%). Néanmoins, il faut noter que le mécanisme intervenant dans les variations de paramètres du composé racémiqueactif, est plus complexe que dans le cas du racémique. En effet, dans (\pm) -Cr(en)₃(SCN)₃.0,75H₂O, la taille de l'ion complexe étant indépendante de la température (Brouty et al., 1977b), les contractions de paramètres observées lors du refroidissement, sont dues uniquement au renforcement de la cohésion intermoléculaire. Par contre, pour $|(+)-Co(en)_3(-)-Cr(en)_3|(SCN)_6$. n-H₂O, trois phénomènes sont en compétition dans l'évolution des paramètres en fonction de la température: (1) la contraction des liaisons hydrogène, (2) l'augmentation de volume de (-)- $[Cr(en)_3]^{3+}$, (3) la diminution de volume de (+)- $[Co(en)_3]^{3+}$.

Dans ces conditions, les modifications de paramètres dépendent de la répartition structurale des ions complexes. Ainsi, dans la direction **c**, caractérisée par un alignement d'octaèdres de même nature (-)-[Cr(en)₃]³⁺ {ou (+)-[Co(en)₃]³⁺}, la contraction de paramètre liée au renforcement des liaisons hydrogène, se trouve contrariée par la dilatation des ions (-)-[Cr(en)₃]³⁺; en conséquence, **c** ne subit ici aucune variation, ce qui n'est pas le cas dans (\pm) -Cr(en)₃(SCN)₃.0,75H₂O. Par contre, le long de **b**, où il existe une alternance d'ions (+)-[Co(en)₃]³⁺ et (-)-[Cr(en)₃]³⁺, la diminution de volume de (+)-[Co(en)₃]³⁺ compense la dilatation de (-)-[Cr(en)₃]³⁺; **b** subit donc une variation (17,71 \rightarrow 17,66 Å) comparable à celle observée dans le racémiTableau 8. Liaisons hydrogène à 293 et 133 K de [(+)-Co(en)₃(-)-Cr(en)₃](SCN)₆.nH₂O

Contraction thermique de la liaison $H \cdots B$ dans les racémique et racémique-actif isomorphes. Code de symétrie des atomes homologues ramenés dans la maille: (i) 1 - x, 1 - y, $\frac{1}{2} + z$.

H I Hydrogène équatorial H2 Hydrogène axial

		293 K				133 K		Contraction thermique de la liaison $H \cdots B$	
$A-\mathrm{H}\cdots B$		<i>A</i> · · · B (Å)	H · · · <i>B</i> (Å)	Angle (°)	$A \cdots B$ (Å)	H…B (Å)	Angle (°)	Racémique- actif	(\pm) -Cr(en) ₃ - (SCN) ₃ .0,75H ₂ O
$(-) \cdot Cr(en)_3 ^{3+}$									
$\begin{array}{l} N(11)-H1(N11)\cdots NS(21)^{i}\\ N(11)-H2(N11)\cdots S(22)^{i}\\ N(11)-H2(N11)\cdots OX(12)^{i}\\ N(21)-H1(N21)\cdots NS(32)\\ N(21)-H2(N21)\cdots S(11)\\ N(31)-H1(N31)\cdots NS(12)^{i}\\ N(31)-H2(N31)\cdots S(12) \end{array}$	(b + c) (a + b) (a + b) (a + b) (b) (c)	2,997 (9) 3,638 (9) 3,065 (9) 2,885 (9) 3,430 (8) 2,908 (9) 3,490 (7)	2,16 2,86 2,41 2,05 2,66 2,11 2,73	159 151 133 161 147 153 147	2,943 (9) 3,605 (9) 3,019 (9) 2,973 (9) 3,373 (8) 2,915 (9) 3,471 (7)	2,10 2,84 2,35 2,14 2,64 2,10 2,74	162 147 133 159 141 156 142	3% 1 2 -4 1 0 0	7% 5 2 7 5 12 5
$ \begin{array}{l} lel \\ N(41) - H1(N41L) \cdots NS(32) \\ N(41) - H2(N41L) \cdots S(21)^i \\ N(41) - H2(N41L) \cdots OX(12)^i \\ N(51) - H1(N51L) \cdots NS(21)^i \\ N(51) - H2(N51L) \cdots S(11) \\ *N(51) - H2(N51L) \cdots S(12) \\ ob \\ \end{array} $	(b) (a + b) (b + c) (c)	3,037 (9) 3,581 (9) 3,269 (9) 2,992 (9) 3,633 (9) 3,502 (9)	2,19 2,89 2,54 2,13 2,91 2,81	165 137 142 170 141 137	3,024 (9) 3,452 (9) 3,060 (9) 3,047 (9) 3,558 (9) 3,384 (9)	2,19 2,80 2,32 2,20 2,82 2,74	160 133 143 164 144 132	0 3 9 -3 3 2	5 6 5 1 7
$\begin{array}{l} N(41)-H1(N410)\cdots NS(32)\\ N(41)-H2(N410)\cdots OX(12)^i\\ N(51)-H1(N510)\cdots NS(21)^i\\ N(51)-H2(N510)\cdots S(11)\\ N(61)-H1(N61)\cdots NS(12)^i\\ N(61)-H2(N61)\cdots S(21)^i\\ *N(61)-H2(N61)\cdots S(22)^i\\ \end{array}$	 (a + b) (b + c) (b) (b) (a + b) 	3,037 (9) 3,269 (9) 2,992 (9) 3,633 (9) 3,005 (9) 3,491 (9) 3,587 (9)	2,42 2,42 2,26 2,78 2,24 2,70 2,94	128 165 142 166 146 152 132	2,928 (9) 3,540 (9) 3,574 (9)	2,12 2,80 2,87	169 144 140	5 -4 2	7 2
$(+) - [Co(en)_3]^{3+}$									
$\begin{array}{l} N(12) - H1(N12) \cdots NS(22)^i \\ N(12) - H2(N12) \cdots S(21)^i \\ N(12) - H2(N12) \cdots OX(11)^i \\ N(22) - H1(N22) \cdots NS(31) \\ N(22) - H2(N22) \cdots S(12) \\ N(32) - H1(N32) \cdots NS(11)^i \\ N(32) - H2(N32) \cdots S(11) \end{array}$	(-c) (-a) (-a)	2,931 (8) 3,552 (9) 3,071 (9) 3,163 (9) 3,367 (9) 2,957 (9) 3,490 (9)	2,10 2,80 2,39 2,34 2,67 2,12 2,77	159 146 135 158 137 160 141	2,946 (9) 3,550 (9) 3,056 (9) 2,978 (9) 3,380 (9) 2,919 (9) 3,493 (9)	2,11 2,77 2,37 2,13 2,63 2,09 2,78	164 150 136 166 145 157 140	0 1 9 1 1 0	
$ let \\ N(42)-H1(N42L)\cdots NS(31) \\ N(42)-H2(N42L)\cdots S(22)^i \\ N(42)-H2(N42L)\cdots OX(11)^i \\ N(52)-H1(N52L)\cdots NS(22)^i \\ *N(52)-H2(N52L)\cdots S(11) \\ N(52)-H2(N52L)\cdots S(12) \\ N(62)-H1(N62)\cdots NS(11)^i \\ N(62)-H2(N62)\cdots S(21)^i \\ *N(62)-H2(N62)\cdots S(21)^i \\ \end{cases} $	(-a) (-c) (c) (-a)	3,006 (9) 3,375 (9) 2,983 (9) 3,099 (9) 3,464 (7) 3,486 (9) 2,953 (9) 3,630 (9) 3,688 (9)	2,15 2,64 2,33 2,30 2,96 2,66 2,11 2,90 2,94	168 143 131 152 118 159 163 142 145	3,042 (9) 3,407 (9) 3,062 (9) 3,004 (9) 3,417 (9) 3,496 (9) 2,951 (9) 3,599 (9) 3,568 (9)	2,19 2,70 2,37 2,21 2,94 2,67 2,14 2,86 2,86	166 140 137 151 116 160 154 144 140	$ \begin{array}{r} -2 \\ -2 \\ -2 \\ 4 \\ 1 \\ 0 \\ -1 \\ 1 \\ 3 \end{array} $	
H ₂ O									
$OX(11) - H1(OX11) \cdots S(31)$ $OX(12) - H1(OX12) \cdots S(32)$		3,214 (9) 3,297 (9)	2,30 2,38	151 158	3,271 (9) 3,248 (9)	2,26 2,35	141 162	2 1	2
Valeur moyenne de la contraction thermique								1,1%	4,6%

 $[\]mathbf{H} \cdots \mathbf{B}$

i.

* Liaisons hydrogène supplémentaires par rapport à (\pm) -Cr(en)₃(SCN)₃.0,75 H₂O.

que $(17,77 \rightarrow 17,71 \text{ Å})$ et essentiellement liée au renforcement de la cohésion dans cette direction.

Désordre conformationnel

Les résultats obtenus sur le complexe racémique-actif confirment le mécanisme décrit dans la structure du (\pm) -Cr(en)₃(SCN)₃.0,75H₂O (Brouty *et al.*, 1977*a*,*b*) pour mettre en évidence la corrélation qui existe entre le désordre conformationnel et la force des interactions par liaisons hydrogène. Si l'on compare la forme lel du ligand désordonné du (-)- $[Cr(en)_1]^{3+}$ au ligand équivalent 100% lel du (+)-[Co(en)]³⁺, il apparaît que les liaisons hydrogène sont plus fortes sur le complexe non désordonné. Par ailleurs, comme pour le ligand désordonné du composé racémique, la conformation ob (Tableau 8) est favorisée à 293 K par les liaisons $N(51) \cdots S(11), N(41) \cdots OX(12)$ et la conformation lel par les liaisons N(41)····NS(32), N(51)····NS(21). A 133 K, les liaisons $N(51)-H2(N51L)\cdots S(11)$ et $N(41)-H2(N41L)\cdots OX(12)$ sont renforcées, favorisant cette fois-ci la forme lel et la disparition du

désordre conformationnel. Ceci vient confirmer le rôle déterminant des molécules d'eau, dans les phénomènes de désordre conformationnel observés dans les complexes (\pm) -Cr(en)₃(SCN)₃.0,75H₂O et [(+)-Co(en)₃-(-)-Cr(en)₃](SCN)₆.1(ou 2)H₂O.

Nous remercions M B. Bachet pour sa contribution efficace apportée lors des mesures diffractométriques.

Références

- BROUTY, C., SPINAT, P., WHULER, A. & HERPIN, P. (1975). Bull. Soc. Fr. Minér. Crist. 98, 218–222.
- BROUTY, C., SPINAT, P., WHULER, A. & HERPIN, P. (1977a). Acta Cryst. B33, 1913–1920.
- BROUTY, C., SPINAT, P., WHULER, A. & HERPIN, P. (1977b). Acta Cryst. B33, 1920–1926.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
- IUPAC (1970). Inorg. Chem. 9, 1-5.
- RAYMOND, K. N., CORFIELD, P. W. R. & IBERS, J. A. (1968). Inorg. Chem. 7, 1362–1373.
- WHULER, A., BROUTY, C., SPINAT, P. & HERPIN, P. (1976). Acta Cryst. B32, 194–198.

Acta Cryst. (1977). B33, 2572-2578

Structure Cristalline du Tétraphénylborate de Tributylammonium Monohydraté: un Exemple d'Interaction $H-\pi$

PAR A. AUBRY ET J. PROTAS

Laboratoire de Minéralogie–Cristallographie, Equipe de recherche associée au CNRS n° 162, Université de Nancy I, Faculté des Sciences, Centre de 2ème Cycle, Case Officielle n° 140, 54037 Nancy Cédex, France

ET E. MORENO-GONZALEZ ET M. MARRAUD

Laboratoire de Chimie Physique Macromoléculaire, Equipe de recherche associée au CNRS n° 23, ENSIC, 1 rue Grandville, 54000 Nancy Cédex, France

(Reçu le 4 février 1977, accepté le 14 février 1977)

The crystal structure of tributylammonium tetraphenylborate monohydrate has been solved by *MULTAN*. The crystals are monoclinic, space group $P2_1/n$, with four molecules in a cell with lattice constants: $a = 17.82 \pm 0.03$, $b = 18.78 \pm 0.03$, $c = 10.24 \pm 0.02$ Å, $\beta = 110.54 \pm 0.10^{\circ}$. Least-squares refinements with anisotropic temperature factors give a final *R* value of 0.063. The interaction between the ammonium site and the anion is ensured by means of the water molecule, according to the scheme N⁺-H…*H* $H \dots R$. Both $H \dots R$

W-H bonds are directed towards the π electron orbitals with distances of 2.32 and 2.27 Å between the water hydrogen atom and the aromatic rings.

Introduction

Dans les études en solution, on néglige généralement les interactions entre les cations et l'anion tétraphénylborate, $B(C_6H_5)_4$, car la charge électrique négative très délocalisée est répartie sur quatre noyaux aromatiques. Lorsqu'il est associé à un cation trialcoylammonium, certains auteurs pensent qu'il est suffisam-